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1. 0   INTRODUCTION 

We have previously reported a number of results from our studies 
of IR emission from nascent ozone formed by the three body recombination 
O + O^ + M  - 03t + M (M = O2,   N2). (   )   These results can be summarized 
as follows. 

1. Emission from the  w 3-mode (S-lZp.) implied a quantum ef- 
ficiency of ^(^3) a 0. 8 quanta per recombination; since this 
result was obtained under the assumption that the v j and V3 - 
modes were in V-V equilibrium,   the composit result was 
therefore expressed as <b(v j)+ b(v ■$) =  1. 6.    Also,   assuming 
this amount of vibrational energy was shared intramode to 
form a Boltzmann distriSution,   then Tv(v-j) ä 1 250oK was cal- 
culated. 

2. Emission from v^-upper vibrational levels (10-12|i) was sub- 
stantial and indicated a population in these levels greater than 
Tv = 1250oK would imply. 

3. Measurements on the v ^ mode (13. 5-15. 5|i) indicated a quantum 
efficiency per recombination of 6(^2) = ^- ?• 

4. The above results account for about 50% of the i. 1 eV exo- 
thermicity of this reaction; the remainder presumably goes 
to the translation,   rotation and electronic excitation of the 
ozone or the collision partner 

5. The vibrational relaxation rate for loss of quanta from the 
mode under observation (03t + M   • O3 + M,   M = O2,   N2) was 
measured from these signals. 

6. The overall "bulk" recombination rate was also obtained from 
the data. 

(2) 
All of these results were in the last final reporr   ' and have recently 

been published in the open literature. (1)   Reference  1 is complete and dis- 
cusses our  results in context with previously published work on ozone re- 
combination. 

In the present program,   wc extended these  results by looking for 
emission from the (101) combination band (4. 7|i) and by looking for evidence 
of the excited (but bound) triplet state predicted by recent theoretical ef- 
forts. w> 4'   The combination band is interesting as an independent check 
on our earlier v 3 and v j-mode measurements and our understanding of 
the processes involved.    In particular,  we justified our assumption of 



either equal quantum efficiencies of excitation for v j and V3 or ripid 
V-V coupling between them for our experimental conditions.     The triplet 
state is interesting since it is predictedH) to be bound by 0. 6 + 0. 1 eV, 
but has not been experimentally detected.     It could represent an important 
channel for  recombination since both *he triplet and the singlet ground 
state of ozone correlate with the ground state reactants,   viz.   OPP) + C^1!!) 4 
M  - O3 (triplet or singlet) + M.     As discussed previously, (2) however, 
we have no quantitative information as to the  relative importance of 
these two channels since although the triplet has more spin states,   it also 
has fewer vibration/rotation states. 

Experimentally,   we looked for emission both from v j and V3 
vibration/rotation transitions of the excited electronic states (1-0 transi- 
tions predicted(3) at:  v :[S. 03|i), v 2(15. 8fi) and v 3(8. 06fi)),  and from the 
(forbidden) triplet to singlet electronic state transitions.     These electronic 
transitions are predicted to be at 0. 68 + 0. 2 eV in absorption and 0. 38 + 
0. 2 eV in emission for transitions beginning in a ground vibrational state.      I 
Since our experiment is designed to detect emission,   we looked from 2. 1 
to 6, 9/i,   realizing that if such emission overlayed a vibration-rotation band, 
the interpretation would be confused.     The f/number was crudely estima- 
ted(^) to be on the order of lO"8 to 10-9.     For our experiment,   we then 
estimated S/N >   10 if the quenching rate   implied  lO"* or more collisions. 

J 



2. 0 COMBINATION BAND (W. ♦ W3) 

2, 1    Experimental 

(1) The experimental apparatus has been well described previously. 
Briefly,   we flash photolyse mixtures of (typically) 0. 3% O3 ♦ O2 at p = 70 
to 400 torr,   which decomposes over half of the ozone.     The O(lD) formed 
by the photolysis is quenched to 0(?P) in nanoseconds whioh then reacts 
O2 to make 03^ (vibrationai y excited) in a three-body recombination pro- 
cess,   which occurs  on the     rder of 100|i sec.   It has been shown that all 
of our signals are due to excitation resulting from the recombination,   with 
degradation due to collisional quenching,   and not from any excited states 
resulting from the photolysis.   Detection at these wavelengths was with an 
In:Sb detector and filter package which we have utili/.ed previously on 
another program. I'I 

The combination band measurements were maae using two filters 
whose transmission characteristics are showi. in Fig.   1 along with * plot 
of the room temperature emission spectrum of ozone in this region.vKJ 
The 03^ which is formed quickly establishes a rotational temperature near 
300oK,   so that for 101   » 000 transitions the emission spectrum should 
closely resemble this plot; for 202   • 101,   201    * 100, etc transitions this 
bana shape would be roughly preserved but shilted to longer wav lengths 
due to anharmonicity.     The 4. 7fj. filter provides a basic measurement 
uniformly covering the band and an adjacent region of longer wav.ileugths. 
The 5. l|i filter sees mainly the P-branch and longer wavelengths and was 
used to get some indication about upper level excitations. 

2. 2    Results - 4. 7^ Filter 

Unlike our previous work at longer wavelengths,   in these measure- 
ments the IR detector initially responds to scattered emission from the 
flash lamps.     This is despite substantial baffeling and is the result of 
light directly transmitted by the quart/, envelope of the flash tube.     At longer 
wavelengths,   the quartz acts to filter  such light and one has only thermal 
emission from ihe surface of the envelope.     This can be seen in Fig.   2 
where we display oscillograms of 4. 7|i measurements.     In order to extract 
as much information as possible from the data,   we verified the reproduci- 
bility of the flash recovery in pure N2,  and then point-by-point subtracted 
the NT "signals" from the signals coming from the O3 + O2 mixtures.    This 
difference in signals S(03) - S(N2) was attributed to (v !  +1/3) combination 
band emission.     In contrast to our earlier work at 9. 6|i,   we were not able 
to see the time to peak signal {t^^ or the value of the peak signal due to 
excessive flash lamp light at these early times.     We did measure the signal 
at times   >    3^^ to obtain the overall recombination rate (as illustrated 
in Fig.   2) and to obtain by extrapolation,   if necessary,   the signal level at 
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I = 3tmax.     Our detector was also calibrated with a blackbody standard 
radiation source so the absolute  signal levels could be compared to pre- 
dictions based on our earlier v 3-mode measurements.    ') 

In all of this work,  a quasi-steady state is established in a time 
scale of order of the vibrational relaxation time for the process C3' + 
M - O^ + M (where the dagger indicates vibrational excitation in the mode 
under observation,   and relaxation is out of this mode to translation or to 
another mode of the same or the colliding molecule).     The  steady-state 
represents a balance between the three body formation reaction (rate con- 
stant k^) and the sum of the quenching reactions (rate constant k2).     Thus, 
as the initial O-atoms (formed by the flash) are consumed,   the signal 
decays with a time constant determined by the overall bulk recombination 
rate,   since this is what controls the rate of loss of O-atoms.     The formalism 
is given in Section III of Ref.    1.     The fact that we obtain kj  (recombination) = 
3, 12 + 0. 61 x lO-34,   in agreement with our earlier result,   is further con- 
firmaTion that these signals are due to the processes described.     For com- 
pleteness,   the data are shown in Fig.   3 for both the 4. 7)1,   5. 1^ and a 
combination of these two filters in series (the  signals at 70 torr were of 
quite low signal-to-noise and their scatter is therefore not too disturbing). 

hi general,   we read absolute  signal magnitudes at t = 3tmax.     Ex- 
ceptions occurred in the higher pressure cases when we extrapolated the 
signals,   in plots  such as in Fig.   2,   back to 3trnax. (10)    For purposes of 
analysis and display,   it was convenient to utilize this procedure as opposed 
to comparing runs at different pressures at different times.     We justified 
this extrapolation for our conditions by plottinp the expected signal be- 
havior vs t/tmax for various pressures.     The quantity (f/frrax) which is 
plotted,   varies with time according to ( exp (-Rit) - exp (-I^t)) where Rj  = 
ki I Ozl 2 and R2 = k2 [ O2I   with ki  = 3 x lO"34 cm6 sec" 1  and kz = 2 x  10" 14 

cnw sec"1,   which are the values we previously obtained, d )    In Fig.   4 
this is shown and  it can be seen that for t  >  3trnax the signal behaves linear- 
ly on a semilog plot. 

The  results of our measurements with the 4. 7|i filter are given in 
Fig.   5.     This figu.-e is analogous lo Fig.   7 of Ref.    1  except that data are 
given for 1 ■ 3lmay rather than tma»     Thi; solid line through the data has 
a calculated pressure d-pendence and is scaled by observation to best fit 
the data.     This line  is taken to represent | 101l/[ O) 0 at t =  3lmax from our 
present data.     The dashed line shows our previous  results for [ 001 | /[ O] 0 
at trpax from which the broken line  is obtained by our model of the signal 
vs time behavior.     The  ratio of ([ \0\\/\ 0|0)3tmax    to ([ 001] /[ Oj 0)3tmax 

is just [ 101 I/| 001]   = e-0/Tv where O (OR) =  L 438 X (v IQ]   "   w001   cm"1). 
Thus,  we obtain a vibrational temperature Ty = 1200oK from these present 
results.     The  sensitivity of Tv to ihe data is illustrated by the numbers on 
Fig.   5.     This is essentially the  same vibrational temperature we obtained 
using our V 3-mode data in the earlier work Ul (1250oK) and indicates its 
adequacy for understanding the population distribution among the lowest 
few levels.    As we SdW previously,   however,  and will see with our 5. l|j. 
data here,   the higher  vibrational levels are populated in excess of what 
would be predicted us ng Tv =  1200oK. 

 —  J 
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Our largest uncertainty in these measurements is the O-atom con- 
centration,   10|0,   for two reasons.     Firstly,   O-atoms are obtained both by 
photolysis O3 ♦ hv    <■   0(l D) + O2 (^ + O3    *  0(3P) + ZO2,   and the amount  of 
O2 0^.) formed in the flash is a subject of debate in the literature   '11) 
Secondly,   we have conflicting data  in this present work on tie amount of 
primary photolysis.     Considerable attention w.is given to this problem in 
our previous work,  and we rather consistantly measured 30 to 35% primary 
photolysis,      1 his data is obtained separately from the TR measurements by 
use ol O3 + N2 mixtures for reasons discussed earlier. l»J    In the present 
case we took our 4. 7|i data,  and then,   for convenience,   obtained f 3 mode 
(9. 6/i) data to check our photolysis by reference to our earlier work.   We 
obtained 21% photolysis which seemed reasonable for "old" flash lamps. 
Subsequently (a month later) when out   flash lamps began to give difficulty 
with pretriggering,   we measured,   using an O3 + N2 mixture,  a primary 
photolysis of 49% which seems much too high based on all our earlier 
results. I»*)    V\ e have arbitrarily used the average of these two determina- 
tions (40%) in our data  reduction for results during this period. 

These data were checked for self-absorption in the manner discussed 
in Appendix B of Rof.   1,  and a correction factor of 22% is utilized in re- 
duction of the data. 

2. 3    Results 5. Ijj. Filter 

A few runs were made with the 5. 1/i filter and that data is illustrated 
in Fig.   6.     Here we put both the N2 (recovery of the detector from the flash) 
and the O3 + O2 traces on the same oscillogram so that the difference be- 
tween the signals can be more easily obtained.     Because of the longer wave- 
length bandpass of this filter,   there is Itss flash lamp light picked up by 
the detector.     Again,   we obtained a bulk recombination rate consistent with 
our earlier work ( ->, 3 x 10"-^ cm" sec'^). 

Including the appropriate absolute calibrations,   the power incident 
on the detector with the 5. l|i filter was comparable to that obtained with 
the 4. 7p. filter.     Considering the degree of overlap with the band,   shown 
in Fig.   1,   this seems surprising.     Qualitatively,   however,   it could be 
interpreted  .n terms of upper level vibrational excitation,   in agreement 
with our past results using the "v3-upper levels" filter.     This interpretation 
is not the only om* possible,   however,  as we will discuss in Section 4. 0. 
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3. 0 EXCITED STATE W3 AND v ,   V-R TRANSITIONS - 8M 

I)ata were obu-»ined in the same cell confiRuration but UGIHR a special 
\U

Cnu'v   uteCt0r With cold-shield.   filter,   lens and MOSFET preamplifier (all 
at b"K) that had been developed for our earlier w. rk. (')   The spectral re- 
^AO^ 

0f thiS filter at r00m temPeratu-2 is shown in Fig.   7 along with the 
SOO   K emission spectrum of ozone calculated using the AFCRL computer 
tape of o/.one lines. (V)   This filter curve will shift to shorter wavelengths 
when cooled to 5°K by about 1  to 3% according to its manufacturer      The 
filter was used in series with SrF2 chosen to provide additional blockage 
against long wavelength transmission.     It clearly does not intercept the 
ground state v ,  or v 3 bands,  and of course their higher level V-R transi- 
tions are shifted to longer wavelengths.     The 2v 2 combination band,   which 
l:es just out of the bandpass at shorter wavelengths,   has been shown by 
McC^a and Shaw«1'! and it appears weak;  its strength however,   has not been 
given,  Rt confirmed in a  recent conve rsation. (M)    We have estimated its 
value,   based on the scan shown in Ref.   13 and comparison to adjacent 
measured bands,   at S = 0. 14 ama"! crW.     At this value it should clearly 
make no contribution in the present work. 

With pure N2 there was only a very weak transient signal measured 
(0. 1  mv peak at t   m  ^ sec after flash initiation),   indicating very minor 
response to scattered (probably thermal) photons from the flash lamps. 
With O3 f 02 mixtures small signals were recorded as illustrated in Fig    8 
I here is an initial  10,isec loss.of the trace due to electrical pickup (com- 
pare Fig.   4 of Ref.    I),   but then the signal rises to a peak and decay as 
O-atoms are depleted.     This final decay time was consistent with normal 
three-body recombination as the mechanism for overall O-atom depletion. 
Qualitatively,   it decreased with increasing pressure,   but signals were too 
noisy to see if it demonstrated the expected pressure squared dependence. 
in« peak signal (Sniax) was read,   and after subtracting the correscondint- 
nitrogen signal SN2 of 0. 1  tnV it was plotted vs the product of tota' pres- 
sure and mitial ozone concentration      This is appropriate if the signal 
• proportional to [o2] x [o] (since [o] or   initial P^) as it is in the simple 

theoretical model we have utilized thus far in presenting our results, d) 

■    M.  .   JhVe iS *, dr
ifficulty i" further quantitative reduction of this data 

in that we do not definitely know its origin.     Since there are no absorption 
features of room temperature ozone in this bandpass,   then vibration- 
ro ation transitions of the bound triplet state  seems like a good hypothesis 
If this is the ex^   anation,   then we need the  radiative decay time for 3] 

/(V'3.= W 1  .Bz (V3 ^0) t0 ProPerly deduce the concentration otIOx* 
(äste   isk • denoting ^B2 electronic and dagger t denoting vibrational 
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For this  run the final decay Um«  implies kj   = Z. 5 x  10"       and 
the time to the peak  implies a quenchinc  rate k2 = 2 x  1 0" ' 
cm '   sec" '. 
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excitation)      Loss of O^ can be by either electronic or vibrational de- 
excilation and presumably only collisional quenching is important foi  our 
lOOfi sec time scale. (15) 

for 

If we arbitrarily use 94 msec (the  1A1  v 3-mode  radiative lifetime) 

03^    V   03% h. 

and the formalism given in Ref,   1,   then we obtain a quantum efficiency for 

o + o2 + o2 - o3    + o2 

of e-*^  = 0. Oil.     It must be remembered that d*,   Ihe quantum efficiency for 
electronic excitation without regard for simultaneous vibrational excitation 
is not implied by this number,   except that 6*  >  d»   '•     To obtain <>   ,   one 
needs to observe 3BZ    •   1A1  electronic emission summed over all vibrational 
levels. 

It should also be noted that the time to peak shinal in the 8|i data 
implies a quenching rate constant for removal of O3   ■ by the process 

O- 
*t + M o. + M 

or 

O. •t ♦   M i   O,    ♦ M 

of kJ or ku approximately equal to 2 x lO"14 cm3 sec"1,   which curiously 
is the same value we obtain for relaxation of ground state vibrational 
levels. (1) 
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4. 0    WAVELENGTH SCANS 2. 6 -  6. 5|i 

1 he vertical spacing between the lowest ozone  pol< nti.i) eaergy sur- 
faces is predicted to be 0. 38 eV at the ^B^ equilibrium geometrv  with a 
"sate" uncertainty quoted r.s 0, 2 eV and a comment that the 0.     -  ■ '    figure 
is probably a little high, l*J   This value of 0. 38 eV + 0. 2 eV cor. .ert* to 
3. 3^ with bounds of 2. 1 and 6. 9fJ..     Since we are looking for emission,   it 
is this number,  and not the 0. 68 ^V spacing at ^A.  equilibrium geometry, 
which is appropriate. 

For these  scans we used a wavelength calibrated room temperature 
circular-va riable-filter (CVF) together with our Cu:Ge detector.     The de- 
tector utilized sapphire as a cold blocking filter to cut off around 6. Bp and 
thereby minimize thermal background noise.     The CVF filter has a spectral 
resolution of A X /A = 0. 8% where A X is the full width at half max.     In fact 
we did not have our detector clement focused on the CVF so as to attain this 
resolution,   but rather we operated with (measured) A X/X  a 2. 5%.     Our 
earlier wavelength calibration was checked by scanning a filter of known 
bandpass and found to be within 0. 05ji.     The detector plus CVF plus system 
of viewing apertures was calibrated using a standard blackbody radiation 
source. 

The  results of these scans were that we did not see any signals we 
could attribute to 03*'.     We display the essence of the results in Fig.   10 
by showing the hounds we were able to obtain with these  scans at the  radia- 
tion that could li-tve been coming from O3*.     f igure   10 also has the  results 
of all our other measurements plotted so as to demonstrate their bandpass 
(full width at half max)   and their relative magnitudes. 

Our greatest restriction was probably due to the  intrinsic 0. 8% 
spectral resolution of the CVF and the fact that we were searching for a 
band emission of (estimated) low S/N.    Given that the width of a normal 
vibration-rotation band (e. g. ,   see Fig.   1) is A X/X —   5% with probable 
spreading due to upper level excitations,  and presumably additional spread- 
ing if coupled with an electronic transition then a resolution like  lO^o or 
greater would be more useful.   Because of this we also did additional search- 
ing using various fixed bandpass filters.     In particular,   we used filters with 
bandpassess (1. 97 -  2. 46/i),   (2. 35 -  3. 05p),   (3. 64 -  4. 85|i),   (4. 18 - 4. 61|i). 
(4. 41   - 4. 9ip - the  "4. 7ji filter"), (4. 75 - 5. 43p - the "S. l|i filter"),  and 
(5. 67 -  7. 45)i - the  "6. 6/1 filter").     There was no significant new informa- 
tion from this effort except for the signals obtained using the  6. 6/1 filter, »••' 
These signals are in a region presumably free of normal ground state band 
emission,  aid yet as can be seen in Fig     11  they qualitatively increase in 
magnitude and in rate of decay with pressure.     The final decay -ate is with- 
in a factor of two of the expected rate of recombination but beyond that not 
much can be  said.     The decay does not 1 jok exponential,   but then the 
signals are rather noisy, 
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Fi^.    10      Spectral Intensity vs Wavelength for Ozone Bands at 300oK are 
shown with this  Plot (Open Rectangles  -  FWHM is indicated by 
the Spectral Extent while Relative Heights are Scaled by their 
Predicted Relative Emissions for Tv ■  1300oK).    Also shown 
are relative powers incident on a detector in our experiments 
al 200 torr for the various filters we have used (solid rectangles 
FWHM is indicated by the spectral extent). 
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The intriguing question is what generates the 6  6fi signals.     They 
could be due to 4;   -   U, transitions,   or they ^uld be ?art of a recom- 
bination continuum,   which has been recently proposed  U?)    U *• totter 
does exist it would be desirable to characterize its intensity and spectral 
dependence t0 find what contribution it may make in other spectral regxons. 
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